Skip to contents

eda_pol Polishes two-way tables using median, means, or any customizable functions.

Usage

eda_pol(
  x,
  row = NULL,
  col = NULL,
  val = NULL,
  stat = median,
  plot = TRUE,
  eps = 0.01,
  maxiter = 5,
  sort = FALSE,
  p = 1,
  tukey = FALSE,
  offset = 1e-05,
  col.quant = FALSE,
  colpal = "RdYlBu",
  adj.mar = TRUE,
  res.size = 1,
  row.size = 1,
  col.size = 1,
  res.txt = TRUE,
  label.txt = TRUE
)

Arguments

x

A three column data frame

row

Name of column assigned to the row effect

col

Name of column assigned to the column effect

val

Name of column assigned to the response variable

stat

Polishing statistic (default is median)

plot

Boolean determining if an output plot should be generated

eps

Convergence tolerance parameter

maxiter

Maximum number of iterations

sort

Boolean determining if the effects row/columns should be sorted

p

Re-expression power parameter

tukey

Boolean determining if Tukey's power transformation should used. If FALSE, the Box-Cox transformation is adopted.

offset

Offset to add to values if at leat one value is 0 and the power is negative

col.quant

Boolean determining if a quantile classification scheme should be used

colpal

Color palette to adopt

adj.mar

Boolean determining if margin width needs to accomodate labels

res.size

Size of residual values in plot [0-1]

row.size

Size of row effect values in plot [0-1]

col.size

Size of column effect values in plot [0-1]

res.txt

Boolean determining if values should be added to plot

label.txt

Boolean determining if margin and column labels should be plotted

Value

A list of class eda_polish with the following named components:

  • long The median polish residuals with three columns: Column levels, row levels and residual values.

  • wide The median polish residuals table in wide form.

  • row Row effects table

  • col Column effects table

  • global Overall value (common value)

  • iter Number of iterations before polish stabilizes.

  • cv Table of residuals, row effects, column effects and CV values in long form.

  • power Transformation power applied to values prior to polishing.

  • IQ_row Ratio between interquartile row effect values and 80th quantile of residuals.

  • IQ_col Ratio between interquartile column effect values and 80th quantile of residuals.

Details

The function performs a polish on a two way table. By default, it applies a median polish, but other statistical summaries such as the mean can be passed to the function via the stat = argument. The function returns a list of row/column effects along with global and residual values. It will also generate a colored table if plot = TRUE.

References

Examples

df <- data.frame(region =  rep( c("NE", "NC", "S", "W"), each = 5),
edu = rep( c("ed8", "ed9to11", "ed12", "ed13to15", "ed16"), 4),
perc = c(25.3, 25.3, 18.2, 18.3, 16.3, 32.1, 29, 18.8,
        24.3, 19, 38.8, 31, 19.3, 15.7, 16.8, 25.4, 21.1, 20.3, 24, 17.5))

M <- eda_pol(df, row = region, col = edu, val = perc, plot = FALSE)
plot(M)