eda_sym
Generates a symmetry QQ plot.
Usage
eda_sym(
x,
p = 1L,
tukey = FALSE,
q.type = 5,
plot = TRUE,
show.par = TRUE,
grey = 0.6,
pch = 21,
p.col = "grey50",
p.fill = "grey80",
size = 0.8,
alpha = 0.8,
q = TRUE,
tails = FALSE,
inner = 0.75,
tail.pch = 21,
tail.p.col = "grey70",
tail.p.fill = NULL,
xlab = NULL,
ylab = NULL,
title = NULL,
t.size = 1.2,
...
)
Arguments
- x
Vector of sample
- p
Power transformation to apply to
x
.- tukey
Boolean determining if a Tukey transformation should be adopted (
FALSE
adopts a Box-Cox transformation).- q.type
An integer between 1 and 9 selecting one of the nine quantile algorithms used to generate inner shaded region. (See
quantile
tile function).- plot
Boolean determining if plot should be generated.
- show.par
Boolean determining if power parameter should be displayed.
- grey
Grey level to apply to plot elements (0 to 1 with 1 = black).
- pch
Point symbol type.
- p.col
Color for point symbol.
- p.fill
Point fill color passed to
bg
(Only used forpch
ranging from 21-25).- size
Point size (0-1)
- alpha
Point transparency (0 = transparent, 1 = opaque). Only applicable if
rgb()
is not used to define point colors.- q
Boolean determining if
inner
data region should be shaded.- tails
Boolean determining if points outside of the
inner
region should be symbolized differently. Tail-end points are symbolized via thetail.pch
,tail.p.col
andtail.p.fill
arguments.- inner
Fraction of the data considered as "mid values". Defaults to 75\ which of the tail-end points are to be symbolized differently,
tails
.- tail.pch
Tail-end point symbol type (See
tails
).- tail.p.col
Tail-end color for point symbol (See
tails
).- tail.p.fill
Tail-end point fill color passed to
bg
(Only used fortail.pch
ranging from 21-25).- xlab
X label for output plot. Ignored if
x
is a dataframe.- ylab
Y label for output plot. Ignored if
x
is a dataframe.- title
Title to add to plot.
- t.size
Title size.
- ...
Not used
Details
Generates a symmetry quantile plot that compares the lower half of the sorted data to its upper half. If the distribution is perfectly symmetrical, the points will fall on the line.