Removes records from either tail-ends of a sorted dataset.
Trimming can be performed by number of records (specify the num =
option) or by quantiles (specify the prop=
option). eda_trim
Trims a vector eda_trim_df
Trims a data frame eda_ltrim
Left-trims a vector eda_rtrim
Right-trims a
vector eda_ltrim_df
Left-trims a dataframe eda_rtrim_df
Right-trims a dataframe
Usage
eda_trim(x, prop = 0.05, num = 0)
eda_trim_df(dat, x, prop = 0.05, num = 0)
eda_ltrim(x, prop = 0.05, num = 0)
eda_ltrim_df(dat, x, prop = 0.05, num = 0)
eda_rtrim(x, prop = 0.05, num = 0)
eda_rtrim_df(dat, x, prop = 0.05, num = 0)
Details
The input dataset does not need to be sorted (sorting is performed in the functions).
If
num
is set to zero, then the function will assume that the trimming is to be done by fraction (defined by theprop
parameter).If
eda_trim
oreda_trim_df
functions are called, thenum
andprop
values apply to each tail. For example, ifnum = 5
then the 5 smallest AND 5 largest values are removed from the data.NA
values must be stripped from the input vector or column elements before running the trim functions.Elements are returned sorted on the trimmed elements.
Examples
# Trim a vector by 10% (i.e. 10% of the smallest and 10% of the largest
# values)
eda_trim( mtcars[,1], prop=0.1)
#> [1] 14.7 15.0 15.2 15.2 15.5 15.8 16.4 17.3 17.8 18.1 18.7 19.2 19.2 19.7 21.0
#> [16] 21.0 21.4 21.4 21.5 22.8 22.8 24.4 26.0 27.3
# Trim a data frame by 10% using the mpg column(i.e. 10% of the smallest
# and 10% of the largest mpg values)
eda_trim_df( mtcars, mpg, prop=0.1)
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1